Door sign Corner Detection

Suhas Dara! and Lucinda Nguyen?

2Department of Computer Science at University of Texas at Austin
12Gates-Dell Complex, 2317 Speedway, Austin TX-78712
Email ids: !'suhasdara@utexas.edu, *lucinda.onguyen@ gmail.com

Abstract— Robots need to have an understanding of their
environment, including semantic awareness, to perform navi-
gation and localization tasks. Robots can utilize Simultaneous
Localization and Mapping (SLAM) in order to construct a map,
and the PRISM system automates the typically manual job of
semantics labelling. The goal of this project is to offer a more
flexible door sign corner detection algorithm that can be utilized
by PRISM. To accomplish this goal, two neural networks are
utilized to first perform door sign binary classification and then
corner detection.

I. INTRODUCTION

In order to accomplish common tasks in robotics, a robot
is often required to travel to a specific location or explore an
area safely. As a result, it is useful if a robot can construct
a map with labels of significant landmarks marked on it
for navigation and localization. While SLAM algorithms
allow for an automatic mapping of an environment, the
Pose Registration for Integrated Semantic Mapping (PRISM)
system at University of Texas at Austin (UT) automates the
process of localizing door signs (a common landmark) and
annotating their locations on a map.

PRISM currently uses a heuristic approach to recognize
door signs and detect the corners of door signs. A door
signs corners can be used to calculate its homography, a 2D
projective transformation that can be thought of as the image
of a rigidly transformed 3D plane that has been projected into
2D space. Currently, PRISM can only detect one type of door
sign in the UT Gates-Dell Complex (GDC). In our approach,
we present a more flexible door sign corner detector, which
uses deep learning to detect corners of one type of door sign.
But, this approach can be trained to recognize multiple types
of door signs in the future. The result of this project can be
utilized as a plugin for the new version of PRISM. This
approach can be very practical because of the consistency
of door signs’ design and shape, combined with the flexible
nature of neural networks.

II. BACKGROUND

Our project has two parts: detection of door signs and
detection of the door sign’s corners.

Note: In this paper, we commonly refer to two different
types of door signs in our datasets, and in our environment.
Type 1 door signs are just room numbers as seen in Fig 1.
Type 2 door signs have room numbers along with a room
name.

A. Corner detection

Currently, PRISM does not use deep learning to recognize
door signs, and instead uses a heuristic approach. The PRISM
classifier filters color and extracts any edges visible within
the image. If the edges represent a deformed or transposed
rectangle, then text detection will be performed to verify
if the detected object is a door sign or not. Currently, the
PRISM classifier can recognize only type 1 door signs.
Similarly, we implemented a door sign corner detection
algorithm that can recognize only type 1 door signs for now.
But, because of the flexibility of deep learning, our algorithm
could be trained to recognize type 2 door signs as well.

B. Object detection

Many tasks require object detection, which is an important
application in robotics. As said by Zhou et al., deep learn-
ing, specifically convolutional neural networks (CNN), have
quickly improved and shown great results in the field of ob-
ject detection. Deep learning is a branch of machine learning
that deals with learning data representations to learn useful
features [9]. Because of features such as shared weights and
local connectivity, CNNs are able to form better generaliza-
tion on classification and detection problems. Convolution
occurs when a kernel/filter is used to slide over an input
image to create a feature map. With multiple convolution
layers, and with the addition of activation functions that
introduce non-linear features into the neural network, CNNs
have high versatility. [3].

In order to binary classify door sign images, we chose to
use an existing object detection classifier and retrain it with
a custom data set of door signs from the GDC building.
Two common approachs to object detection are Regional
CNNs (R-CNN), and You Only Look Once (YOLO). R-
CNN takes in an image, proposes multiple bounding boxes,
and then uses a classifier to see if any objects are in a
bounding box. After this, R-CNN will tighten the coordinates
of bounding boxes, eliminate duplicate objects, and re-score
the objects. However, R-CNN is rather slow because it has to
train multiple models separately and it needs to send every
single proposed bounding box through a CNN, which spans
multiple layers [5].

Another popular approach is You Only Look Once
(YOLO). YOLO’s detection system is framed as a regression
problem and it uses a CNN on a single image to produce a
bounding box for each detected object in the image along



with its confidence in the prediction. Splitting an image
into grid cells, YOLO immediately calculates the bounding
boxes’ coordinates and probabilities for multiple objects.
Bounding boxes are proposed when the center of an object
is within a grid cell. One limitation of YOLO is its spatial
constraints. Since a grid cell can only have one class,
but possible overlapping bounding boxes, detecting nearby
objects will be difficult. Another difficulty is recognizing
objects in non-standard shape or weird positions [5].

Out of the two approaches for object detection, we chose
YOLO as it is much faster than an R-CNN, and easy to
manipulate and train custom datasets. For this project, the
first limitation would be less likely to apply since multiple
door signs will usually not be in vicinity of each other.
Considering the second limitation, the robot will usually be
facing the door sign directly from the front (or at a slight
angle) and from a fixed height as the camera is mounted on
the robot. Hence, the door signs will not be in extremely
skewed positions.

C. Corner detection

Other than PRISM, which is under research at UT, there
are some other corner detection algorithms, such as the Har-
ris Corner detection and the Features from Accelerated Seg-
ment Test (FAST) algorithm. The Harris Corner algorithm
is more popularly used than others. Harris corner detection,
similar to PRISM, first detects edges in the image and then
detects collisions between the edges, which it defines as a
corner. The algorithm also performs extra optimization such
as looking at the color gradients in the vicinity of detected
edges and corners to determine whether the predicted corners
are actually corners or not. There have also been adaptations
of the of Harris Corner detection such as one done by Ye et
al. [8].

The FAST algorithm classifies a pixel as a corner when
it is darker by a certain threshold amount than a set of
contiguous pixels in an area, or when it is brighter by a
certain threshold amount than a set of contiguous pixels [6].

There are also some projects that use neural networks for
corner problems. For example, Dias et al. implemented a
neural network based corner classifier for binary and gray
scale images. After edge detection is performed on an image,
several sub-images containing edges are sent to a neural
network, which binary classifies the images as containing
or not containing corners [2].

For the corner detection, we chose to implement a neural
network, which builds upon the output of YOLO. The
bounding boxes will be utilized to tighten the scope of
corner detection. We chose to use a fully convolutional neural
network (FCNN), which is a CNN that does not utilize fully
connected layers at all in the entire network. Instead, FCNNs
commonly use transposed convolutions which unsample the
output of the convolutional layers to restore the original im-
age resolution. FCNNs are often used for image segmentation
and image classification problems [4].

III. METHOD

The detection of the corners of door signs can be divided
into four stages. In the first stage, binary classification is
performed to detect if an image contains a door sign or
not. If there is a predicted door sign, the second stage will
involve pre-processing the image in order to be an input
for the neural network. The third stage is corner detection
where we run the neural network on the image and output a
black image with four white blobs that marks the corners of
the door sign. Because our neural network currently outputs
large blobs for the corners, there is a fourth stage where the
centroids of the blobs are obtained and made the predicted
coordinates of the corners.

A. Training YOLO

In order to create a binary classifier, we retrained YOLO to
only detect door signs. YOLO has a neural network spanning
24 convolutional and two fully connected layers for detecting
objects. YOLO version 2 (YOLOV2) can detect 80 different
types of objects, and furthermore can be trained with training
datasets to detect custom objects [5]. In order to retrain
YOLO, we had to gather a custom data set of images with
positive and negative instances of door signs and also label
their bounding boxes by hand if there were door signs.

The ASUS Xtion Pro Openni2 camera was used to capture
all images for the dataset. Instead of capturing individual
images, the camera was attached to the BWI robot and driven
around in the posterior half of Human-Robot Interaction
(HRI) lab while capturing a rosbag of the rostopic /cam-
era/rgb/image_raw published by the camera. This rosbag was
converted to images by using a ROS utility at a conversion
rate of 5 frames per second. This conversion resulted in a
dataset containing 2338 images.

The images were hand-labelled by carefully drawing
bounding boxes around door signs in the images using a
tool called BBox-Label-Tool-Master. This tool produced text
files corresponding to each image that contained information
(supervised labels) about the bounding boxes drawn for the
particular image. We then had to use a python script to
convert every label in the text files into the format required
by YOLO.

The dataset was then split into two sets: one for training
and one for testing. 90 percent of the images were used in the
dataset for training. After setting up the YOLO configuration
files, YOLO was trained with the training dataset in order to
retrieve the weights for the door sign classifier [7].

After completion of training, the classifier was tested
against the original training dataset, the testing dataset, and a
completely new sample of images (another dataset) collected
from the anterior part of the HRI lab captured with the same
method as before. The analysis of the results is under the
Evaluation section.

B. Pre-processing for corner detection neural network

During YOLO’s training and testing process, the dimen-
sions and location of the bounding boxes predicting the door
signs were also retrieved as text files. We then used the



Fig. 1: An Example of a door sign prediction by YOLO

text files to crop their respective images to retrieve new
smaller images that contained mostly the door sign and
some surrounding background. This was the first step of
pre-processing the images for our neural network. However,
after retrieving the cropped images, we have a dataset of two
different types of door signs. For the purpose of training our
neural network, we decided to use only door signs of type 1.
Type 1 images were handpicked from the cropped dataset.

Another obstacle before the dataset became training wor-
thy was the size of the cropped images. Because we plan
to use our project’s output with PRISM, where the robot is
driven to directly face the door signs, our neural network
does not have a requirement to detect door signs that are too
small. Hence, extremely small images unsuitable for training
were filtered by a simple algorithm: if neither of the image’s
dimensions were greater than 80 pixels, then the image was
excluded from our neural network’s training dataset. After
these pre-processing steps, our training dataset contained 240
images, with the largest image width at 223 pixels, and the
largest image height at 159 pixels.

Lastly, the images were grayscaled. Grayscaling helps
eliminate recurring color patterns from the images, prevent-
ing the neural network from learning erroneous data. Bui et
al. showed that object classification using grayscale images
had higher accuracy compared with color images among
different types of classifiers. This was another reason for
grayscaling the images [1].

After this processing, the cropped images from YOLO’s
output needed to have their corners labelled in order to
be used as the training dataset for our neural network.
The corners of each image were carefully hand-labelled
to the best extent possible with a tool created utilizing
the OpenCV library and mouse-click event handlers. This
tool produces a text label corresponding to each image that
contained eight floating point values, representing the X and
Y coordinates of the four corners in clockwise order from
the top-left to the bottom-left corners. For our neural network
design we required image labels, and not text labels like the
aforementioned. So, the text labels were then converted to

image labels. Each image label is a canvas of black pixels
with four white pixels representing the four corners of the
door sign in the respective locations.

Lastly, since large datasets and examples are necessary
for the neural network to perform well, data augmentation
was performed on the training dataset in order to double our
training dataset. The training dataset’s size was increased
from 240 images to 480 images by including horizontally
flipped versions of the door signs. The text labels and image
labels were also flipped accordingly to match the flipped
versions of the door signs.

C. The neural network

Our neural network model is fully convolutional, and
utilizes Pytorch, a deep learning library, for its architecture.
We wanted our neural network to be able to detect the
corners of the door sign passed in. For this purpose, we
made each pixel of the image a single classification problem
of being a door sign corner or not. As stated before, our
input is a cropped version of the bounding box outputted by
YOLO that has been grayscaled and needed to meet a size
requirement of at least 80 pixels in either dimension. The
expected output of the neural network is a black image with
four white pixels to denote the corners (refer bottom-left and
top-right of Fig 3).

We designed the neural network to follow a squeeze-
expand pattern (as seen in Fig. 2), where the image is
squeezed through a network of convolutional layers and then
expanded through a network of transposed convolutional
layers, to get back an image of the original size, that can
be compared with the image labels created for supervised
training. The purpose of this was to extract important features
for the corner detection as the inputs convolved.

1) Additional pre-processing: The pre-processing of the
neural network involves a few more steps than what is done
through other procedures. The grayscale version of the image
is read in as a PyTorch CUDA float tensor, along with the
image label. When loading in the tensors, the images are
padded with black pixels to make the size of the image
223 x 159 pixels (as these are the largest dimensions in
our training dataset.) This ensures that all the tensors in our
training dataset are of the same size, and can be collated into
random batches for better performance while training.

2) Architecture: For the first half of the architecture of the
neural network, we have four alternating two-dimensional
convolutional and two-dimensional batch normalization lay-
ers. The convolutional layers expand the channel dimension
of the tensor, while reducing the actual height and width
dimensions. All the convolutional layers utilize a kernel size
of 5, with a stride size of 2. The stride size of 2 is used to pick
up less, but more important features from the image, because
of the very high sparseness of the four corners. Additionally,
the batch normalization layers normalize the input over
the channel dimension, using learnable parameters, sampled
from a uniform distribution from 0 to 1: U(0,1).



Conv Layer

Kernel size: 5
Batch norm: 16
RelLU

Conv Layer

Kernel size: 5
Batch norm: 32
RelLU

Conv Layer

Kernel size: 5
Batch norm: 64
RelLU

Conv Layer
Kernel size: 5
Batch norm: 128

RelLU

Deconv Layer
Kernel size: 5
RelLU

Deconv Layer
Kernel size: 5
RelLU

Deconv Layer
Kernel size: 5
RelLU

Deconv Layer
Kernel size: 5

lox 80 x 112
1 x159x223

64x 20 x 28
32x40x 50

128x10x 14

64x 20 x 28 l6x 80 x 112

32x40x 506 1 x 159 x223

Fig. 2: The corner detection neural network has 4 convolutional layers and 4 transposed convolutional layers. Additionally, batch
normalization layers were utilized to normalize the inputs to non-linearities in the outputs of the previous layers in the convolutional
phase of the neural network. For the activation function, leaky ReLU was utilized. The neural network was designed in a squeeze-expand
manner, to pick up the most important details, before expanding to the original image size again.

Additionally, after every batch normalization, the output
is run through a leaky ReLU activation layer that does not
completely eliminate negative values like a regular ReL.U
layer would. It minimizes negative values’ effect on the
weights instead of completely eliminating it as follows:

T x>0
¢(z) = {o.om 2 <0

For the second half of the architecture of the neural
network, we have four alternating two-dimensional trans-
posed convolutional layers. These transposed convolutional
layers reduce the channel dimension of the tensor, while
increasing the actual height and width dimensions, or more
simply, perform the opposite reshaping compared to the
two-dimensional convolutional layers. After every transposed
convolutional layer, leaky ReLU activation layer is applied,
except on the last layer’s output, as we want the final output
not tampered with. This final output is of the same dimension
as the initial input to the convolution layer, so that it can be
compared to the image label for the calculation of loss for
back propagation.

In neural networks, the loss function calculates how far
away the neural networks output is from the target. This loss
is used for back propagation which calculates the gradient of
the loss function, and the optimizer will update the weights of
the neural network as it is being trained. For the loss function,
we utilize the PyTorch library’s BCEWithLogitsLoss loss
function which is a Sigmoid Cross Entropy function with
an addition of the logit function. This loss function is
stabler compared to a plain sigmoid function, a binary cross
entropy loss function, or a manual combination of both.
BCEWithLogitsLoss combines a sigmoid function with a
binary cross entropy layer. The function computes loss as
follows:

l(x,y) = reduction_func(ly,la, ..., IN)

ln = _wn[pnyn IOg U(xn) + (1 - yn)log(l - U(xn))]

This function utilizes the log-sum-exp trick to cancel out
the large gradient of the sigmoid function for near-zero
values (point of inflection). This allows for a smoother loss
function.

We provide a positive weight that is applied to every cell
in the input. This positive weight will have no effect on
black pixels (as color black is represented by 0), but white
pixels will get a much higher weight. The positive weight is
calculated as follows:

) neg_samples
pos_weight = ————
pos_samples

Each pixel is a single classification problem: black or
white. In each image, there will be only 4 positive samples
(the white pixels) and all the black pixels will be negative
samples.

We set the loss’s reduction function such that the loss
function’s output for each classification problem (each pixel)
will be summed. If the reduction function is mean, the loss
function would favor white pixels, and the loss function
will try to maximize bringing out white pixels, by ignoring
other pixels, which would result in a completely white
output. Taking the sum instead of the mean allows for all
pixels’ respective weights to be taken into consideration
while computing the loss.

A suitable optimizer will allow good results to arrive
quicker during training. Our neural network utilizes the
Adam optimizer with a learning rate of 0.001, which is an
extended version of the Stochastic Gradient Descent (SGD)
optimizer. The key advantage Adam optimizer offers over
the classic SGD optimizer is its adaptive gradient algorithm,
which allows a per parameter learning rate that improves the
performances on image problems.



3) Training: The training dataset of 480 images of grey,
cropped door signs and their respective image labels was
used to train the neural network. For training, a batch size
of 12 images was used, and the model was trained for 2000
epochs. This amounted to a total of 80000 iterations.

4) Testing: The original secondary dataset that was uti-
lized for the testing of YOLO, was also utilized for testing
our corner detection neural network. However, images that
contained type 1 door signs were handpicked once again,
as our neural network only detects corners for door signs
of type 1. After running the handpicked images through the
pre-processing, the testing dataset comprised of 49 images.
These images were run through the trained neural network
and the blob detection algorithm (refer following section III-
D) to pinpoint the corners of door signs in the 49 images,
and were evaluated for accuracy.

D. Corner blob detection

Our neural network currently outputs sparse white blobs
for corners instead of four white pixels. So, we utilize
a simple blob detector to pin down the corners. When
the neural network successfully detects four blobs for the
corners, the blob detector will output the X, Y coordinates
for the center of each blob, which would represent a door
sign’s corner. In order to implement this, the neural network’s
output is binary inverted, and a threshold image is retrieved,
with a threshold value of 220 pixels to filter out only the
brightest spots in the image (indicating the white blobs). The
SimpleBlobDetector utility from OpenCV library is utilized
to detect the blobs. However, the blobs are still sparse and
the blob detector may not detect the blobs.

The threshold image is run through some processing
to highlight the blobs better. Erosion, a commonly used
morphological operation, computes a local minimum over
a small area of the image and replaces the pixels under that
area with the minimal value. Hence, any areas with dark
pixels (as the inverted blobs are black) will become larger,
and make it easier for the blob detector to detect the blobs.
The blob detector filters by black color and a minimum area
of 25 pixels, but not by convexity, circularity, or inertia.
These parameter choices were made because some of the
blobs outputted by the neural network were not completely
circular and were concave. The blob detector ignores blobs
smaller than 25 pixels to eliminate small noise picked up by
the neural network.

If less than four corners are detected with the blob detector,
a dilation is performed on the image before the detector is
rerun. Dilation, the sister operation to erosion, computes a
local maximum over a small area of the image and replaces
the pixels under that area with the maximal value. This
allows bright regions (the white background surrounding the
black blobs) to grow larger, and allows us to segment any
blobs that fused together because of erosion. If at least four
blobs are still not detected, the image is ignored, and deemed
as having undetectable corners. Using the detected blobs
(refer bottom-right of Fig 3), their centroids are extracted,

which are the final corners of the door sign outputted by the
neural network.

Fig. 3: An Example of corner detection process for a given door
sign. Top-left shows a cropped, padded door sign. Bottom-left
shows the hand-labelled door sign converted to an image label (only
needed in training phase). Top-right shows the output of the neural
network, with white blobs in corner vicinity. Bottom-right shows
the detected blobs on the inverted version of neural network output.

IV. EVALUATION

Analysis of the project’s success contains two parts: the
performance of retrained YOLO that performs binary classi-
fication, and the accuracy of the neural network that performs
corner detection on images of door signs.

Evaluation of the retrained YOLO was done by running
two different test sets through the YOLO detection system
and gathering data on how accurate, consistent and confident
YOLO was.

Evaluation of the neural network was done by running
the training dataset and testing dataset through the neural
network and calculating how accurate the predictions were.
Accuracy was tested by calculating the Euclidean distance
between the center of the blobs outputted by the neural
network and the actual corners that were hand labelled, and
then averaging the four distances per image.

A. YOLO re-training evaluation

YOLO has a set threshold for outputting whether it sees
a particular object in a given image. This threshold is set at
25 percent by default for YOLOvV2. Any prediction made by
the classifier that has a confidence of less than 25 percent
is automatically disregarded by the classifier. Before the
classifier was run on the testing datasets, it was run on the
training dataset again to check for overfitting. The average
confidence level was between 75 and 95 percent, and not
close to a 100 percent very often, indicating that the classifier
did not overfit.

The classifier was then run on the primary testing dataset,
a mutually exclusive subset of the original dataset. The
average confidence level given by the classifier was slightly
lesser than that of the training dataset, ranging from 70
to 95 percent, with very occasional predictions of a lower



confidence. The reason for such high confidence even on
the primary testing dataset can probably be attributed to the
origin of the images. Images in the training and primary
testing datasets were part of the same video footage and were
probably distinguishable only by a margin of a few pixels.
This is why a secondary testing dataset was chosen that did
not contain the same door signs as the other datasets.

The secondary testing dataset consists of 818 images,
of which 466 images contain instances of door signs. The
classifier was run on the secondary testing dataset, and
out of the 466 images, door signs were identified in 369
of them. Although only 369 out of 466 door signs were
identified, several of the images were instances of the same
door signs. Despite the classifier not identifying all the door
signs in their first appearances, it did identify every door
sign eventually. Also, there was not a single image where
the classifier detected a door sign when it did not exist
(i.e. no false positives). The average confidence level of the
prediction given by the classifier was also quite high at 84.85
percent, with a standard deviation of 8.64 percent. There
were a couple of instances where the classifier only had a
confidence level between 50 and 60 percent, but these are
very unlikely instances as these values are more than three
standard deviations away from the mean.

B. Corner detection neural network evaluation

There are two ways of evaluating the corner detection
neural network. The first way is to look at the loss value
during and after the completion of the training of the neural
network. The second and better analysis is to compare the
neural network output with the labels with math (refer section
I1-C.4).

1) Evaluation of loss: The value of loss was evaluated
using the TensorBoard utility from the TensorFlow library.

Average of corner prediction error
Training set
250

200

150

100

Number of images

50

0-1px 1-2px 2-3px 3-4px 4 -5 px 5+ px

Average corner prediction error (pixels)

loss
tag: data/loss

Fig. 5: TensorBoard’s representation of the loss for the 2000 epochs
of training

Loss was recorded after every epoch of training (refer Fig
5). The value of loss started very high, above 7000, but soon
fell below 1000. The value of loss stagnated at around 100
after about 900 epochs. The value of loss at the end of
training was 99.8. The value of loss is quite high, which
explains why there are big, sparse blobs of white pixels in
the neural network output instead of small, dense blobs or
a single pixel. However, the overhead of such a large value
of loss was mostly eliminated through blob detection and
centroid calculation.

2) Evaluation of neural network output: We evaluated
the performance of our neural network by following the
methodology in section III-C.4. Euclidean distance between
predicted and hand-labelled corners was calculated to be used
as a measure of the error in prediction.

Average of corner prediction error
Testing set

40

30

20

Number of images

0-1px 1-2px 2-3px 3-4px 4-5px 5+ px

Average corner prediction error (pixels)

Fig. 4: Each histogram shows the average of absolute value of corner prediction error for each image in the given dataset. The left
histogram shows the average error when the trained corner prediction neural network was run on the training dataset of 480 images.
The right histogram shows the average error when the trained neural network was run on a testing dataset of 49 images (The histogram
cumulative is 45 images as the neural network could not find corners in 4 images)



To evaluate the performance of our neural network, before
it was run on the testing dataset, it was first run on the
training dataset of 480 images to test for overfitting, in a
similar way the retrained YOLO was tested for overfitting.
The average Euclidean distance between a predicted corner
and a hand-labelled corner was 2.862 pixels for the training
dataset (refer to left histogram in Fig 4). Out of the 480
images, the majority of images had an average prediction
error of 2-4 pixels, with 217 images having a deviation
between 2 and 3 pixels, and 187 images having a deviation
between 3 and 4 pixels. Only 2 images had average deviation
less than 1 pixel. This data along with a high loss value shows
that the neural network is not overfitted, while producing
decent results.

However, the actual evaluation of the neural network is
with a testing dataset. The original secondary testing dataset
of 818 images was reduced to 49 images after pre-processing
for the neural network. Out of these 49 images, the neural
network combined with blob detection was unable to detect
corners on 4 images. For the remaining 45 images however,
the average Euclidean distance between a predicted corner
and a hand-labelled corner was 2.729 pixels (refer to right
histogram in Fig 4). Out of the 45 images, the majority of
images had an average prediction error of 2-3 pixels, with
29 images falling in the category. This data shows that the
neural network is effective whenever it does detect corners,
but it is unable to detect corners consistently.

Upon closer evaluation of the images on which door sign
corners were not detected, and the images that had a high
prediction error, a few observations were made. Two of
the four images were very dimly lit compared to the other
images. For these two images, it was difficult even for the
human eye to distinguish corners. The other two images
however had good amount of lighting. The issue with these
images was that one or multiple corners were very close
to the edge of the image. Although the corners close to
the edges were detected by the neural network, they were
represented by quite sparse and concave blobs. The blob
detection algorithm was either unable to recognize blobs
shaped as aforementioned, or if recognized, had a larger
margin of error. This shows that the blob detection algorithm
needs to be optimized further.

V. FUTURE PLANS AND IMPROVEMENTS

The short term goal of this project was to accomplish
door sign corner detection, which was accomplished up to
a large extent. However, the long term goal of the project
is to be able to calculate a homography of the door sign,
to be able to accurately position the location of the door
sign onto the robot’s map autonomously instead of manually.
The autonomous approach currently used is PRISM, but
using neural networks adds flexibility to what door signs
can be detected and could possibly increase the accuracy of
corner detection. To achieve the level of accuracy that the
calculation of homography demands, a lot of improvements
will be required. Although an average error of only 2.729

pixels is good, it is not good enough for calculating an
accurate homography.

The best way to improve the accuracy of the corners is
by improving the architecture of the neural network. The
addition of pooling layers and/or linear layers could increase
the effectiveness of the neural network largely. Also, with a
more sophisticated loss function, which takes into account
a normalized gradient for the positive weights instead of
a single value, the corner blobs outputted would likely be
smaller and denser.

Other improvements would involve a better way to detect
blobs in the output of the neural network. A modified version
of the current approach could find edges in the image and
then find the pixel from a blob that is closest to an edge.
A completely different approach to blob detection could be
the OpenCV’s built in K-Means algorithm, which can detect
blobs in the image, as long as the number of blobs are known.
However, for K-Means to work effectively, noise has to be
eliminated from the output of the neural network to the best
extent possible. This is to prevent K-Means from picking up
noise as one of the four corner blobs.

Once sufficient changes to the entire neural network ar-
chitecture are made, a homography for the door sign can
be calculated. PRISM already supports the calculation of a
homography if it is given corners. Hence, for the calcula-
tion of a homography, the corners outputted by our neural
network can be used instead of the corners retrieved with
PRISM'’s heuristic approach. Once all of the aforementioned
is achieved for a single door sign (type 1), the architecture
can be expanded and replicated with other door signs as well.

VI. CONCLUSION

This project utilizes a retrained version of YOLO to
detect two different types of door signs in a given image.
Any detected type 1 door signs will be pre-processed and
passed into a neural network that can detect corners of the
door signs. Currently, the neural network is incapable of
outputting the exact pixel where a corner is located. Hence,
blob detection is performed to obtain the centroid of each
blob which is then labelled as one of the corners.

Overall, our approach utilizes two different convolutional
neural networks in order to perform binary classification
and then corner detection. Hence, there exists flexibility in
two different places to make the door sign corner detec-
tion even more accurate. It also definitely provides more
flexibility over the current heuristic approach used for the
PRISM project, as a neural network can be stretched to also
incorporate non-rectangular door signs, while the heuristic
approach probably cannot because of its rigidity.

ACKNOWLEDGMENTS

We thank the Peter Stone Laboratory for providing an
opportunity to work as a part of the ongoing BWI project.
We are immensely grateful to Dr. Justin Hart for providing
insight and expertise during the research, Jamin Goo, and
Rishi Shah for their assistance throughout the project. We
are also thankful to Shivam Patel for providing direction to
the project and mentoring us.



(1]

(2]

(3]
[4]

[5]

(6]

(7]
(8]

[9]

REFERENCES

Hieu Minh Bui, Margaret Lech, Eva Cheng, Katrina Neville, and
JTan S Burnett. Using grayscale images for object recognition with
convolutional-recursive neural network. In Communications and Elec-
tronics (ICCE), 2016 IEEE Sixth International Conference on, pages
321-325. IEEE, 2016.

PGT Dias, AA Kassim, and V Srinivasan. A neural network based
corner detection method. In Neural Networks, 1995. Proceedings., IEEE
International Conference on, volume 4, pages 2116-2120. IEEE, 1995.
Ujjwal Karn. An intuitive explanation of convolutional neural net-
works., August 2016. Last Accessed 13 September 2018.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolu-
tional networks for semantic segmentation. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2015.
Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You
only look once: Unified, real-time object detection. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages
779-788, 2016.

Edward Rosten and Tom Drummond. Machine learning for high-speed
corner detection. In European conference on computer vision, pages
430-443. Springer, 2006.

Timebutt. How to train yolov2 to detect custom objects, May 2017.
Last Accessed 25 October 2018.

Zhinyong Ye, Yijian Pei, and Jihong Shi. An adaptive algorithm
for harris corner detection. In 2009 International Conference on
Computational Intelligence and Software Engineering, Wuhan, China,
Dec 2009.

Zinyi Zhou, Wei Gong, WenLong Fu, and Du FengTong. Application of
deep learning in object detection. In 2017 IEEE/ACIS 16th International
Conference on Computer and Information Science (ICIS), Wuhan,
China, May 2017.



