
Creating a Database of Objects and Their Positions
in a Large-scale Indoor Environment

Suhas Dara, Sadhvi Darisipudi, Lucinda Nguyen, and Tracy Zhang
College of Natural Sciences

The University of Texas at Austin
Austin, Texas 78705

Abstract—We programmed the BWI Bot to roam around
the GDC and use its camera to record and create a database
of recognizable objects and their respective positions in the
building. We successfully utilized YOLO for object recognition
and then stored the position of each object based on the GDC’s
preexisting map of the current floor. For movement, we built
upon a preexisting functional program in the BWI repository to
create the roaming and swivel movement to assist visualization.
We tested the robot by making it traverse the lab by itself,
capturing the different objects it sees along the way, and finally,
we analyzed the results in the output database file.

I. INTRODUCTION

Mobile robots today are expected to complete a variety of
tasks. Many of these involve accessing and utilizing specific
objects in a large environment. In order for this to be a feasible
task, the robot must have the ability to either search for these
objects or have a way of knowing where these objects are
already located. Because many indoor robots tend to operate
within a single environment, it is plausible to have the robot
build up a database or list of objects and their respective
locations within this environment autonomously. Using this
information collected over time, the robot would be able to
quickly recognize where an object is located and go to this
location. This, as a result, would simplify the process of
obtaining an object and allow for other tasks to be completed
quicker and with relative ease. Our goal is to write a functional
program that allows the robot to autonomously traverse the
vast majority of an indoor environment and to collect and store
information about objects within the environment and where
they exist.

This project not only solves a problem on its own, but helps
other tasks be completed quicker. For example, a task the robot
may be programmed to do is to retrieve a certain object. In
order to do this, the robot must either search for the object
or using this approach, go to the location it has previously
been known to be. Using this second approach not only saves
time but energy as well because the robot will not have to
physically maneuver through the environment looking at every
possible location for where this object may be. Furthermore,
using this approach reduces the amount of work the human
operating the robot would have to do. Rather than having the
user remember where something is located, the robot would
be able to autonomously collect and store information about
objects and their locations to access when necessary. This
will be especially applicable in the context of home robots

or other assistive robots in indoor environments. While this
is not currently a common reality, with the introduction of
non-mobile home robots such as Amazon’s Alexa and Google
Home among many others, mobile home robots that use object
detection are not a distant future.

II. BACKGROUND

Currently, for object recognition using computer vision,
there are two primary approaches. This includes appearance-
based and feature-based methods. Appearance-based meth-
ods make comparisons with an example or template image
while feature-based models implement a search for visual
matches. Many papers utilizing computer vision for object
identification and database creation use a variety of methods
in both areas such as a combination of recognition by parts,
edge matching, divide-and-conquer search, gradient matching,
pose consistency, histogram comparisons, geometric hashing,
Scale-invariant feature transform (SIFT), Speeded Up Robust
Features (SURF) and more [1]. These papers often discuss
a specific combination of such techniques along with differ-
ent softwares to find objects. Popular softwares for object
detection include OpenCV, Deepdream, DeepPy, MATLAB,
Halcon, among many others. Although the methods for object
recognition may be varied in technique and softwares used,
most papers demonstrate that they create databases of objects
in similar way [2]. They all implement some type of a data
structure to record objects once they are found and other
relevant data pertaining to that specific object [3]. To expand
upon this database further, many papers cite how they then
use the database of images and objects they created for
machine learning in order to increase the accuracy of the
object detection [4] [5]. For example the creators of YOLO
use images to train its model for accuracy in object detection
and recognition [6].

Many other robots exist with functionality similar to what
we hope to implement on the BWI Bot. For example, the
Home Exploring Robotic Bulter (HERB) robot from Carnegie
Mellon University (CMU) is a mobile robot that can complete
a variety of household and domestic tasks. One of HERB’s
capabilities that parallels our project includes storing objects
and their locations. HERBs map consists of two parts: a static,
original map, and several lists of map objects with locations
and orientations on the map. The list maintains the position
and orientation of each object, as well as the history of object



sightings which is very similar to our approach [7]. However,
in our approach, we do not save a full history of object settings,
instead overriding the output database file with new objects
and their respective positions every time it is rerun [8].

Another robot is Bossa Nova which is currently being
implemented in Walmart stores across the nation. It traverses
the store aisles taking pictures and recording item inventories
[9]. It can discern missing, broken, or misplaced items on the
shelves and replace or return them to the correct locations.
Because Bossa Nova is a retail or commercial robot and is
not used for academic or research purposes little to no infor-
mation can be found on its software implementation, object
recognition, and location storage. However, the functioning
of the robot is similar to what we have implemented as a
part of this project. So while other existing projects similar to
ours exist, they are different in terms of more detailed specific
functioning.

III. METHOD

This project has two components to it, object detection
and movement of the BWI Bot. For object detection, the
initial approach considered was to use the Movidius Neural
Compute Stick (NCS) which implements a version of real-time
object detection software called tiny-YOLO. This approach
was chosen due to its ability to process incoming image frames
quickly on a GPU. However, due to technical difficulties
getting the Movidius NCS to work, our team was unable to
carry forward with this approach. The next approach chosen
was to use YOLO itself which is also known as Darknet-ROS.
YOLO does not require a GPU to run, but it is significantly
slower than the Movidius NCS. However, YOLO pertains
very well with our project as it is very accessible and usable
as an open-source unlicensed software. Furthermore, many
tutorials exist online teaching both the basics and specifics
of implementing it.

With YOLO, image processing on the BWI Bot will be
relatively slow as the BWI Bot must analyze each frame using
the Microsoft Xbox Kinectv2 (the camera) for recognizable
objects without a powerful GPU. YOLO offers detection of
eighty different classes of objects through pre-trained models,
including but not limited to people, cars, bottles, chairs. Our
project focuses on stationary objects as we only want to store
objects that probably will remain in their positions in the
near future, thus excluding classes such as people, and cars.
This limits to fifty-eight different classes that will be detected.
YOLO divides the image into several regions and weighs the
calculated probabilities in each region. YOLO then publishes
all the objects detected in one image frame, their confidence
levels (recorded as decimals between 0.0 and 1.0), and their
position (bounding box) in the image frame in pixels, which
will be used to get their position with respect to the map of
the floor.

Our object detector is able to publish a topic with positions
of all the objects it has found until now, along with a database
of all these positions in the form of a text file. To accomplish
this, our object detector subscribes to the YOLO publisher,

which publishes bounding boxes of objects that it detects in
the current frame. To find the depth of the object from this
image frame, we also subscribe to the point cloud data of the
camera, which provides us the extrapolation of a 2D pixel into
3D. Once we have the position of the object with respect to
the camera, we try to restrict the positions that make it to the
database which is represented by an output file with all the
positions detected so far, saving the data points in a vector.
We do not want positions that are too similar to positions
detected in previous image frames. This usually denotes a
repeated detection of the same object. Hence, we enforced
a restriction that the current object’s position is within ten
centimeters in all directions of any other object previously
detected, it will be excluded from our database. YOLO’s pre-
trained models do not always provide the best predictions,
and incorrectly identify one object as another. We used the
confidence level of each bounding box as a threshold to limit
objects that make it to the database. This threshold, which we
set to forty-five percent, allows only objects that were detected
with a higher confidence level than forty-five percent to enter
the database. Once we have an object which matches all the
criteria, we transform the object’s position (which is currently
in the camera’s frame of reference) to the map’s frame of
reference.

The second part of the project, as mentioned previously
is the movement of the robot to cover larger ground and find
objects across the floor instead of at a stationary place. Due to
time constraints, in order to implement the roaming movement,
we utilized and altered a preexisting program from the BWI
Bot repository. We used a program from an older project called
”visit door list” that visits a few different doors in a cycle
motion. We chose this in particular because it allows the BWI
Bot to roam the entirety of the AI Lab on GDC 3rd floor.
To visualize this movement we utilized RVIZ (see fig. 2).
We altered the functionality of this program to interrupt the
BWI Bot for seven to fifteen seconds while it is pursuing
a navigation goal, before it resumes its trajectory toward the
goal again. We opted to interrupt the robot because of YOLO’s
limited computation power making it lag a few frames behind
when not having access to a GPU.

IV. EVALUATION

To test our system, we first created a rosbag input stream,
which recorded different objects in the lab using the camera.
The rosbag video was created to contain clear images of
objects that YOLO recognizes such as cell phone, mouse,
bottle, etc. (see Fig. 1). We ran YOLO’s object detection
software concurrently with the rosbag to check if objects were
detected fairly accurately and to ensure that YOLO was setup
accurately. Upon achieving desired results, we tested YOLO
on live feed from the robot, to decide on the duration of the
interrupt for movement.

Prior to any testing on the robot, we used ROS Visualizer
(RVIZ) to localize the BWI Bot to avoid collisions and for it
to record its initial position and for it to calculate and store
the positions of all the objects it finds. For testing whether



Fig. 1. An example of YOLO working with input from the Microsoft Xbox
Kinect in a indoor setting. It recognizes most objects from its databases and
then publishes bounding boxes around them.

our object detector was accurately publishing the positions,
we created a topic listener that helps us utilize RVIZ to view
all the positions of different objects on the map. This topic
listener was dynamic as it ran at the same time as the publisher.
The robot did not have enough processing power to handle
the YOLO publisher, our publisher and our listener together
causing the robot’s laptop (command line interface) to lag
to an unworkable extent. This is when we realized that we
need a static listener that was able to access a database of all
positions, and added a feature of writing all the positions to a
text file. This static listener can be run independently of our
publisher, but can only visualize objects in RVIZ that were
recorded in the previous run of the publisher.

For our final testing on a small sample, we used the second
listener along with our publisher and movement to test
whether our position data was accurately visualized in RVIZ.
The positions were published accurately on the map whenever
the robot was correctly localized on the map, although the
label given to the object was not always correct, which is a
limitation of YOLO itself and not our object detector.

V. RESULTS

After our final testing, we let the robot do an entire round of
the lab by itself, capturing the different objects it sees along the
way. We made the best attempt of localizing the robot perfectly
before running our entire object detector setup. This allowed
the robot to give relatively accurate positions of each object.
YOLO publishes new bounding boxes in the latest frame at
a rate of about 0.3 to 0.5 FPS, giving us access to new data
every 2 to 3 seconds. During this period, the object detector
would evaluate the positions of all the new objects found in
the last dataset received from YOLO, and write them into an
out file that would allow our listener (second) to later grab the
positions data and visualize them accurately in RVIZ (example
shown in Table 1 and Fig 2).

Table 1 lists a few of the objects detected as the robot was
roaming around. The robot identified some things that did not
actually exist at the location, such as recognizing the carpet
as a bed. This illustrates the limitations of YOLO’s object
detection, even with the forty-five percent threshold we chose
for the confidence level. However, we were able to accurately
detect the refrigerator in the kitchen of the BWI lab. When
we compare this to the position of a nearby detected chair
in the lounge, we can see that the differences in their x and
y position (11.2 and 6.8) represented the Euclidean distance
between the chair and refrigerator.

TABLE I
OBJECTS AND THEIR RESPECTIVE LOCATIONS

Object Class X-coordinate Y-coordinate Z-coordinate
Oven -44.7483 -3.09647 0.387882
Chair -32.7629 -3.90937 0.449987

Refrigerator -40.8273 -10.6016 0.176422
Chair -29.6026 -3.82291 0.447743
Bed -32.0595. -12.42 -0.0363596
Cup -13.4071 -10.1501 -0.00217486
Etc. Etc. Etc. Etc.

Fig. 2. The TF frames of the objects detected viewed in RVIZ.

VI. DISCUSSION

This project is important because it helps robots complete
other tasks more quickly and efficiently. For example, a task
a robot may be programmed to do is to retrieve or grasp
a certain object. Thus, the robot must either search for the
object or, using our approach, go the location it had been
previously seen at. Storing objects and their locations saves
both time and energy because the robot will not have to move
through the environment, roaming and searching for the object
dynamically. Additionally, using this approach reduces the
amount of work the human operating the robot would have
to do since the robot is autonomously collecting and storing
information about objects it sees once it is running. This



approach will hopefully make assistive robots more helpful
in many different real-world, indoor settings.

One example of an application of this project in the context
of a home environment is finding lost objects. Even if the
robot’s human user cannot remember where an object was last
seen or where it is located, the robot would be able to keep
a detailed and updated log on the location of the object. In
this scenario, the user could input the name of an object and
the robot would be able to access the object’s last recorded
location which would make finding lost items easier.

While our object detector, accomplished many of its goals,
there are limitations to our approach. For example, the move-
ment of the BWI Bot relies on existing behaviors, which are
not optimized to the extent desired. For example, we rely on
the fact that after the robot has gone into sleep, it will have
to re-localize itself and as a result will swivel or rotate. It
cannot be predicted, however, how long the robot will swivel
or in what direction. A future project could pursue making the
movement aspect of this project better.

Our object detector also has limitations in the dataset.
Because we store a database of poses for each object and
continue to add poses to it, if the object were to be moved,
our object detector would not recognize that there is not an
object in a pose that we previously stated there was; it would
simply add more poses to the database of where the object has
been moved to. This means that our object detector will have
to reset it’s database regularly in order to update the position
of the objects in the environment.

Although this approach provides a working method to solve
the problem at hand, it has several limitations in its ability to
do so. One limitation in our object recognition is that YOLOs
object recognition algorithm is not perfect, and may not always
recognize an object. Furthermore, a complete search of the
room to collect the positions of object can be difficult. For
example, if the robot is done roaming and collecting data, the
user has to manually stop the robot. This is because of its
inability to distinguish whether an area has been visited yet or
if data for certain objects have already been collected. Another
limitation of our approach is that roaming in a semi-random
manner through visiting every door in the AI lab not be an
effective way to search as there is no clear strategy involved.

Other limitations entail our implementation of the Object
Detector. When it writes new positions found into a datafile,
it overrides the existing datafile. This is either a limitation or
an advantage depending on the circumstances under which the
detector is being used. If we want a latest representation of the
lab, this is an advantage as the memory is automatically re-
allocated to the new data, but if we want to update the original
database, this approach will not work.

One architectural limitation of the BWI Bot is that after
multiple circuits of the lab, the localization of the robot is
not exactly the same as when it started its first circuit, which
may lead to duplicate positions that are slightly different
from each other but actually represent the same object. Also,
after all these multiple circuits we have to end the object
detector’s runtime manually. With the time constraint, the

program controlling movement could not be altered enough
to take this into consideration. Eventually though we hope
to improve upon these limitations to make this project more
easily functional and comprehensive.

VII. CONCLUSION

After scouting and researching object detection software
options, we chose YOLO for our project, and utilized it to rec-
ognize and collect data for the positions of objects, while the
BWI Bot roams around the AI Lab. The program controlling
movement is built on existing BWI repository that makes the
BWI Bot visit different doors and rooms in the lab, altering
it to make the robot stop every few seconds for a specific
duration of time to process images and store the objects it
sees. The entire setup was tested on the BWI Bot in the AI Lab
and was observed without any physical interference. After the
BWI Bot completed a circuit of the lab, we stopped it manually
and analyzed the database accumulated, while visualizing it in
RVIZ.

Our project is significant because in an increasingly tech-
nologically advanced world, robots are expected to easily
complete a variety of tasks, some of which require object
detection and recognition within a real world setting. Further
advancements in this general direction will lead to the devel-
opment of a variety of assistive robots in different settings. As
such mobile robots in all sorts of different environments are
becoming more like reality and less of a distant future.

While this is our current approach to the project given
the constraints of time and the robots processing capabilities
without the Movidius Neural Compute Stick, this project has
potential to be extended with new goals, including but not
limited to better movement capabilities, better efficiency and
using the object detector to return to a previously detected
object’s position.

ACKNOWLEDGMENT

The authors of this paper would like to thank Dr. Justin
Hart for guidance along this project. They would also like to
knowledge the lab mentors and teaching assistants for their
guidance, support, and advice. Finally, a special thanks goes
to lab mentor Jamin Goo for helping them outside of his office
hours.

REFERENCES

[1] Shaikh, Soharab Hossain, Khalid Saeed, and Nabendu Chaki. ”Moving
Object Detection Approaches, Challenges and Object Tracking.” Moving
Object Detection Using Background Subtraction SpringerBriefs in Com-
puter Science, 2014, 5-14.

[2] Rahesh Mohan and Rakamant Nevatia ”Perceptual organization for scene
segmentation and description” IEEE Trans Pat Anal Mach Intell. 1992.

[3] D.G. Lowe ”Distinctive image features from scale-invariant keypoints”
International Journal of Computer Vision.

[4] Tony Lindeberg ”Scale invariant feature transform” 2012: Scholarpedia.
[5] Herbert Bay”Speeded-Up Robust Features (SURF)”. Computer Vision

and Image Understanding. 2008: Harvard University Press.
[6] Redmon, Joseph, and Ali Farhadi. ”YOLOv3: An Incremental Improve-

ment.” ArXiv, 2018.



[7] Srinivasa, Siddhartha S., Dave Ferguson, Casey J. Helfrich, Dmitry
Berenson, Alvaro Collet, Rosen Diankov, Garratt Gallagher, Geoffrey
Hollinger, James Kuffner, and Michael Vande Weghe. ”HERB: A Home
Exploring Robotic Butler.” Autonomous Robots 28, no. 1 (2009): 5-20.
doi:10.1007/s10514-009-9160-9.

[8] Gallagher, Garratt, Siddhartha S. Srinivasa, J. Andrew Bagnell, and Dave
Ferguson. ”GATMO: A Generalized Approach to Tracking Movable Ob-
jects.” 2009 IEEE International Conference on Robotics and Automation,
2009. doi:10.1109/robot.2009.5152863.

[9] ”Bossa Nova Robotics.” Bossa Nova Robotics. Accessed May 10, 2018.
http://www.bossanova.com/.


